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The common crystallization conditions of poly(ethylene terephthalate) (PET) were replaced

by an anabaric high-pressure crystallization at 320 °C. The PET samples were characterized

by differential scanning calorimetry, density and microhardness. The resulting two-phase

microstructure was studied by means of absolute small-angle X-ray scattering (SAXS).

A complete SAXS analysis utilizing the interface distribution function (IDF) method was

carried out. The resulting structure exhibited the presence of stacks of 10 nm thick crystalline

lamellae which were separated by amorphous layers of about 1.3 nm thickness. Similar

structures have been found after annealing of amorphous metals and have been termed

nanocrystalline. Microhardness and structure have been discussed in analogy with the

notions from the field of nanostructured materials. Theoretically, a multi-component

lamellar two-phase structure has been discussed. The equations derived allow the

computation of volume fractions and specific surfaces of the components (different kinds of

stacks).
1. Introduction
In preceding studies, the structure of PET crystallized
at atmospheric pressure from the amorphous state by
small-angle X-ray scattering (SAXS) and its correla-
tion to microhardness have been extensively investi-
gated [1, 2]. Semicrystalline PET is known to form
spherulites which are built from stacks of alternating
crystalline lamellae and amorphous layers. Micro-
hardness of PET crystallized isothermally under high
pressure (4 kbar) has been recently determined to es-
tablish correlations with thermal properties and cry-
stallinity [3]. The high crystallinities obtained for the
high-pressure crystallized PET have been shown to
give rise to unprecedently high microhardness values.
Because measurement of the microhardness is fre-
quently reported on nanostructured materials [4, 5],
a comparison of the results obtained on high-pressure
crystallized PET and those obtained on nanostruc-
tured materials is presented.

The search for substances with unusual properties is
one of the challenges in the field of materials science.

When one intends to achieve particularly high crystal-
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linity in a polymer material like PET, in general one
has to apply some sophisticated technique, because
the nature of the polymer chains is known to restrict
the degree of perfection under ordinary processing
conditions. In the field of metallurgy, on the other
hand, it usually requires considerable effort to trans-
form a metallic compound into the amorphous or the
semicrystalline state. Since the time when the advant-
ages of imperfections were discovered by metallur-
gists, the formation of the so-called nanocrystalline
state has become a widely discussed issue [4, 6—8]
which has gained extra impetus after the discovery of
the latest preparation technique: a transition of the
material from the amorphous to the nanocrystalline
state by annealing [9, 10]. A semicrystalline material
is said to be nanocrystalline when its crystallites show
dimensions of the order of 10—100 nm, and if the
crystallites are separated by amorphous zones having
thicknesses of only few atomic layers [4, 11].

Polymer precursors for the production of nanocrystal-
line ceramics as well as polymer matrices embedding

various nanocrystalline materials have been reported
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in the literature [12—20]. Interfaces between nanocrys-
talline alloys and polymers have also been studied.
Recently, Nalwa et al. [21] were the first authors to
report the fabrication of nano-size single crystals from
polymers within a project which aims to produce
electronic or photonic devices, similar to the main
stream research in the field of nanostructured
materials.

Small-angle X-ray scattering is well suited for study-
ing the structure parameters of semicrystalline poly-
mers. SAXS can be interpreted at different levels of
complexity, the simplest one consisting of attributing
a long period, ¸, to the position of the maximum
observed in the scattering curve with the aid of Bragg’s
law [22]. In a two-phase structure, ¸ is the sum of the
average thickness of the crystalline lamellae, l

#
, and

the interlammellar regions, l
!
. In many applications of

SAXS it is of advantage to derive the correlation
function from the observed intensity function [23].
The latter is related to the intensity function by
Fourier transformation. Hence, all information
which is hidden in the latter function, also is present in
the observed correlation function. Finally, one can
also calculate the interface distribution function,
introduced by Ruland [24]. This function is the
second derivative of the correlation function and
represents the probability distribution of finding two
interfaces — between a crystal and the neighbouring
amorphous region — at a given distance. The advant-
age of this function is that it yields the average
values of ¸, l

#
, l

!
and the distribution of the three

quantities. In the Appendix, the basic aspects concern-
ing the interface distribution and its calculation
in case of a multicomponent lamellar system, are
presented.

In the present paper we report the structure of
high-pressure crystallized PET by means of SAXS in
order to highlight the obtained results with reference
to structures from nanocrystalline alloys and nano-
structured compounds.

2. Experimental procedure
2.1. Materials preparation
High-crystallinity PET platelets with a diameter of
30 mm and a thickness of 2 mm were prepared in
a hydraulic press. Amorphous PET pellets were
melted in a cylindrical mould at a temperature of
275 °C for 35 min. Thereafter the melt was pressed at
500 bar. While holding the pressure, the temperature
was decreased to 45 °C. The pressure was then in-
creased up to 4 kbar and the temperature was raised
to 320 °C. After 3 h the temperature was decreased to
45 °C within an interval of 10 min. Finally, the pres-
sure was reduced to atmospheric pressure. In three
consecutive runs, three samples were crystallized at high
pressure. The physical properties of these samples are
given in Table I. The preparation process entails
a substantial loss of molecular weight. Viscosimetry
shows an initial value M

W
"30 kg mol~1, for the

original material and a value of M "8 kg mol~1 for

W

the high-pressure crystallized samples.
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TABLE I Density, q, volume-crystallinity from density, a
D
,

melting temperature, ¹
.
, volume crystallinity, from calorimetry,

a
#C

, and microhardness, H, of the high-pressure crystallized PET
samples

D55 D59 D63

q (g cm~3) 1.4552$10~4 1.4586$10~4 1.4627$10~4

a
D

0.77 0.79 0.82
¹

.
(°C) 275 277 279

a
#C

0.89 0.84 0.87
H(MPa) 320 393 353

2.2. Techniques
Differential scanning calorimetry (DSC) measure-
ments were carried out in the temperature range
25—300 °C at a heating rate of 10 °C min~1 by using
a Mettler DSC 30 calorimeter. Crystallinity was deter-
mined from the ratio of the measured heat of fusion
to the heat of fusion for infinitely thick crystals,
*h

&
"135 J g~1 [25].

The densities of the samples were measured in
a density gradient column containing a mixture of
CCl

4
and isopropanol. From every sample platelet,

several pieces were measured. It turned out that the
density is constant over the volume of all samples.
Volume crystallinity, a

D
, was computed from the

density readings assuming q
!
"1.338 g cm~3 and

q
#
"1.490 g cm~3 [26].
Microhardness was measured using a Leitz

Durimet microhardness tester with a square-based
pyramid indentor. The H-value was derived from the
diagonal length of the indentation by using the rela-
tionship, H"1.854 p/d2, where 1.854 is a geometrical
factor, p is the applied force (N), and d is the diagonal
length of the indentation (m). For each value of H, at
least ten measurements of d were carried out, and the
mean value was calculated [3]

Wide- and small-angle X-ray scattering patterns
were recorded on photographic film using a pin-
hole camera, in order to ensure the isotropicity of the
scattering patterns. For all X-ray measurements
nickel-filtered CuKa radiation was used. Quantitative
SAXS measurements were carried out with a Kratky
Compact Camera, equipped with proportional
counter and energy discriminator. The receiving slit’s
length, l

1
, was set to an integral length of 2.01 nm~1

in units of reciprocal space s, DsD being defined as
(2/k) sin h. (k being the wavelength of radiation and
h half the scattering angle). Calibration to absolute
intensity [27] was carried out by means of the moving
slit method. Every scattering curve is composed of two
parts, recorded with different entrance slit heights (50
and 110 lm), which overlap in the interval
s"0.012—0.08 nm~1. The resulting scattering curve
covers the region between s"0.01 and 1 nm~1.

3. Data evaluation
Because data evaluation has been extensively dis-
cussed in previous papers [28, 29], only a short over-
view will be presented here. The raw data scattering
curves from the Kratky camera were corrected for

background scattering and calibrated in absolute



units. The region in which Porod’s law is valid, was
then searched and the quantities which describe the
deviations of the observed two-phase system from
an ideal one were determined. These quantities are the
local density fluctuation background, II

F-
/», and the

thickness of the phase transition zone, d
5
. The result is

the smeared interference function of the ideal two-
phase system, GI

*$
(s) (cf. Equation A1 of the Appendix).

GI
*$

(s) was then transformed into the one-dimensional
interface distribution function (IDF), g

1
(x), of the ideal

two-phase lamellar system by using Equation A2 of
the Appendix. The IDF was fitted with a model func-
tion using the Simplex algorithm. Several possible
models were tested:

(i) a one-dimensional lattice of crystalline and
amorphous regions, in which both the lattice constant
and the thickness of the crystalline lamellae are subject
to distortions;

(ii) an assembly of perfect lattices with different
lattice constants; and

(iii) a one-dimensional stack with paracrystalline
disorder [30—32] combined with the consideration of
some asymmetry of the layer thickness distribution
functions [28, 33].

It was found that model (iii) gives the best fitting
results and therefore this model was applied in our
evaluation. The fitting parameters were a weight fac-
tor, ¼, related to the amount of the interface per unit
volume (cf. Appendix), the average thicknesses of
amorphous and crystalline layers, dM

!
and dM

#
, their

relative variances, r
!
/dM

!
and r

#
/dM

#
and a parameter

r
H
, which describes the skew of the distance distri-

bution functions. If one knows the crystallinity of
a sample from methods other than SAXS, one can
easily identify which one of the average thicknesses is
the crystalline one. Moreover, in previous studies
[2, 28, 29] it was found that the relative width of the
distribution of the crystalline thicknesses is, in general,
the narrower one. Thus, by comparing the resulting
values of r

!
/dM

!
with r

#
/dM

#
, one is often able to distin-

guish between the crystalline and the amorphous
layers only from the analysis of SAXS results.

4. Results
The macroscopic density, the melting temperature as
determined by DSC, the volume fraction crystallinities
from density and from DSC and the microhardness
values of the samples investigated, are presented in
Table I. The mass fraction crystallinity differs by less
than 2% from the volume fraction crystallinity. The
digits in the designation of the sample after the letter
D denote the third and the fourth significant digit
from the determined density.

Fig. 1 shows the slit-smeared small-angle X-ray
scattering curves up to s"0.3 nm~1. The pres-
ented data are corrected for background scattering
and calibrated to absolute intensity. Close to s"
0.08 nm~1, one observes a well-developed maximum
in the three curves. This value approximately corres-
ponds to a long period of 12 nm. The integral scatter-
ing intensity increases with increasing density of the

samples.
Figure 1 Measured absolute SAXS intensities, II (s)/», of three
PET samples crystallized at 4 kbar for 3 h. For clarity, the tails of
the measured curves are suppressed in the drawing. (—) D 63
(q"1.463 g cm~3), (— — —) D59 (q"1.459 g cm~3), (— - — - —) D55
(q "1.455 g cm~3).

Figure 2 Sample D59: difficulties with the determination of GI
*$
(s).

Owing to a long-ranging form factor scattering, there remains some
freedom for the choice of II

F-
/», d

5
and AI

P
.

Fig. 2 documents a problem with the determination
of the interference function, GI

*$
(s) , which is common

for all three samples: owing to the special structure of
the samples, Porod’s law does not become valid before
s"0.45 nm~1. For s'0.5 nm~1, one observes the
well-known region where the statistical noise grows
because of the properties of the applied transforma-
tion (Equation 3), and the region for evaluation ac-
cording to Porod’s law becomes very small. Thus one
has some freedom to choose the values for the para-
meters II

F-
/», d

5
and Porod’s asymptote, AI

P
. On the

other hand, the choice of the values of the parameters
is constrained by physical reasons. If, for example,
II
F-

/» is chosen too large, the scattering curve of the
corresponding ideal system will show negative values.
If II

F-
/» is chosen too small, d

5
becomes negative. But

even in the allowed range there remains some freedom,
so that we have to scan the parameter space, compute
the interface distribution functions, g

1
(x), and analyse

the physical meaning of the obtained curves in order
to find appropriate values of II

F-
/», d

5
and AI

P
.

Fig. 3 illustrates this procedure for sample D59: If
one chooses a large d

5
, one still has some freedom to

choose AI
1
and II

F-
/» (cf. Fig. 2). One obtains interface

distributions with a pronounced wiggling (dashed

curves in Fig. 3). In particular, the depth of the
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Figure 3 Sample D59: computed interface distributions, g
1
(x), for

various choices of the parameters II
F-
/», d

5
and AI

P
. Large values for

d
5
: AI

P
" (— — ) 2.1, (— ——) 2.5 and (— ——) 2.7 e.u. nm~7. (—);

d
5
; ‘‘small but positive’’: A

P
"2.4 e.u. nm~7.

minimum at r"6 nm prevents the curves from being
successfully fitted with any reasonable stacking statis-
tics. If, on the other hand, d

5
is chosen to be ‘‘small but

positive’’, the determination of the interference func-
tion is straightforward. One varies II

F-
/» until the

integral of GI
*$

(s) approximately vanishes. Then, one
finds the only possible set of parameters and, after
transformation, one obtains an interface distribution
(solid line in Fig. 3) with only moderate oscillations.

The three observed positive peaks, which appear
before the detected ‘‘long period peak’’ with negative
sign lead to the conclusion that at least two different
kinds of layer stacks with different average layer thick-
nesses are present. The severe damping shows that the
long-range order along the stack of layers, indepen-
dently from the choice of the parameters II

F-
/», d

5
and

AI
P
, is very poor. Thus the choice of some one-dimen-

sional lattice model appears not to be appropriate.
Consequently, the interface distributions have been
fitted by two kinds of lamellar stacks, each one corres-
ponding to the paracrystalline model (iii). The results
obtained for the three samples are shown in Fig. 4.

Although it seems to be obvious that at least a two-
component lamellar system is necessary, if one intends
to obtain a reasonable fit, a one-component fit has to
be tried as well. An example for the comparison be-
tween a single-component fit and a double component
fit is shown in Fig. 5. Even with the sample D55, which
does not show the three positive peaks, the single-
component fit does not appear to be acceptable. If,
nevertheless, one assumes a single-component for the
fit and compares the specific surface S/» computed
from the structural data of the fit with the theoretical
value 2/ M̧ , one would find S/»+1/ M̧ , which is only
half as large as the minimum theoretical value. The
double-component fit, on the other hand, yields agree-
ment within the error of determination.

Fig. 6 represents the frequency distributions of layer
thicknesses obtained after the composition of the in-
terface distribution of Fig. 5 using the fitting proced-
ure discussed above. In this plot the ordinate has been
rescaled and expressed in units of the first derivative of
the specific surface, as pointed out in the theoretical

section of the Appendix. The distance distributions
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Figure 4 Final IDFs g
1
(x) of three high-pressure crystallized PET

samples. g
1
(x) describes the one-dimensional statistics within the

stacks from amorphous and crystalline layers. (—) D63, (— — —) D59,
(— ——) D55.

Figure 5 Comparison of (— — — — — ) double-component fit versus
(— ——) single-component fit on (—) the interface distribution func-
tion (IDF) of sample D55.

Figure 6 Sample D59: decomposition of the IDF into the series of
distance distributions, h

5
(x) , by a two-component model fit.

h
!,1

(x) and h
!,2

(x) represent the thickness distributions
of the amorphous layers of the two components,
h
!,1

(x) being related to the dominant component
which represents the majority of the layer stacks in
the sample. Similarly, h

#,1
(x) and h

#,2
(x) represent

the thickness distributions of the crystalline layers.
The thickness distributions of the long periods
2h

L,1
(x) and 2h

L,2
(x) appear with negative sign. For

high values of x one observes two broad distance

distributions with positive sign, which are not labelled.



TABLE II Structural parameters determined directly from the
slit-smeared SAXS data of three high-pressure crystallized PET
samples: density fluctuation background, II

F-
/», Porod’s asym-

ptote, AI
P
, and total scattering power, Q

*$
, of the ideal two-phase

system. The thickness of the phase transition zone, d
5
, is assumed to

be very narrow. Under this assumption the error bars cover the
range of meaningful parameter variation

D55 D59 D63

II
F-
/» (e.u. nm~4) 259 $7 253 $7 264 $7

AI
P

(e.u. nm~7) 2.5$0.2 2.4$0.2 2.1$0.2

They describe the composite lamellae in the stacks,
which are made up of two amorphous layers with
a crystalline layer in between. All the thickness distri-
butions of single layers have been shaded using differ-
ent patterns.

By inspection of the thickness distributions of the
single layers one observes that the majority of the
stacks possesses an extremely high ‘‘linear crystal-
linity’’, a

L
, while the stacks of the smaller component

show a crystallinity of about 40%, which is the cus-
tomary value for PET [26]. The term ‘‘linear crystal-
linity’’, a

L
"dM

#
/ M̧ , designates the crystallinity within

the layer stacks, as determined from the one-dimen-
sional IDF.

Tabel II shows the structural parameters, which
have been determined before the quantitative analysis
of the IDF has been carried out. The density fluctu-
ation background, II

F-
/», is a measure for the short-

range fluctuation of the electron density within the
sample. The values obtained are the smallest ones ever
measured for PET by the authors. In a previous study
[1] on PET crystallized at atmospheric pressure we
found values close to II

F-
/»+550 e.u. nm~4. Because

the magnitude of the density fluctuations is propor-
tional to the isothermal compressibility [34], this find-
ing is in good agreement with the extremely high
hardness values of the high-pressure crystallized
samples. The values obtained for AI

P
describe the

ideal lamellar two-phase system, which is built up by
layers with rugged surfaces. They will be compared to
the weights of the fitted interface distributions.
Q

*$
"(q

%-#
!q

%-!
)2a

L
(1!a

L
) is the scattering power

(or invariant) of the ideal two-phase system and is
computed by integrating the corrected scattering
curve over the whole reciprocal space. One observes
an increase of Q

*$
with increasing sample density,

although one would expect the opposite trend, if
a high crystallinity keeps growing while the contrast
*q

%-
"q

%-#
!q

%-!
remains constant.

Table III presents the structural parameters, which
have been obtained from the model fits of the IDFs
under the assumption of a two-component stacking
structure. It is noteworthy that with increasing density
of the sample the weight of the major component is
decreasing, while the weight of the minor component
is increasing. For the larger component, the thickness
of the amorphous layers, dM

!,1
, is almost constant with

a value of only 1.3 nm, while the thickness of the
crystalline layers, dM

#,1
, increases with increasing den-

sity. The larger component is responsible for the high
Q
*$

(e.u. nm~6) 244.7$3 254.9$13 273.1$13
TABLE III Structural parameters determined from two-compon-
ent model fits on the IDF. The numerical index discriminates
between the different components. ¼

1
and ¼

2
are the weights of

the components; dM
!

and dM
#

are the average thicknesses of the
amorphous and crystalline layers, respectively; r

!
/dM

!
and p

#
/dM

#
are

the relative variances of the local thickness distributions, and r
H

is
the heterogeneity of the sample. The error bars are asymptotic
intervals of confidence, as computed by the fit program from the
parameter correlation matrix

D55 D59 D63

Larger component:
¼

1
(e.u. nm~7) 9.29$0.05 8.61 $0.06 7.27$0.04

dM
!,1

(nm) 1.29$0.01 1.26 $0.01 1.48$0.01
dM
#,1

(nm) 8.8 $0.2 11.1 $0.5 14.2$0.7
r
!,1

/dM
!,1

0.45$0.01 0.375$0.006 0.31$0.07
r
#,1

/dM
#,1

0.13$0.01 0.18 $0.03 0.01
r
H,1

0.21$0.01 0.17 $0.01 0.28$0.07

Smaller component:
¼

2
(e.u. nm~7) 0.55$0.03 1.01 $0.04 1.15$0.05

dM
!,2

(nm) 3.5 $0.1 5.1 $0.1 7.2 $0.2
dM
#,2

(nm) 4.69$0.05 3.86 $0.04 4.27$0.08
r
!,2

/dM
!,2

0.39$0.06 0.33 $0.03 0.28$0.04
r
#,2

/dM
#,2

0.09$0.02 0.16 $0.01 0
r
H,2

0.10$0.02 0 0.17$0.03

average crystallinity of the samples. It is also to be
noted that for all samples, and both components, the
relative width of the thickness distributions of the
amorphous layers is considerably wider than that of
the corresponding thickness distributions of the cry-
stalline layers. The r

i
/dM

i
values in Table III are not the

observed relative widths, because of the skewness of
the distributions represented by the parameter r

H
.

The observable relative variances, (r
i
/dM

i
)
0"4

, may be
computed from the equation

[(r
i
/dM

i
)2
0"4

#1]"[(r
i
/dM

i
)2#1](r2

H
#1) (1)

Table IV shows the derived parameters of the two-
phase layer structures, which have been computed
from the values presented in Tables II and III. Firstly,
the long periods and the linear crystallinities, a

L, i
,

have been computed from the average layer thick-
nesses. Then, the approximate volume fractions, '

i
,

have been computed using Equation 17. The specific
surfaces, (S/»)

i
, follow from Equation 14. The ex-

pected theoretical values for the specific surfaces of flat
and infinitely extended layers, 2m

i
/ M̧

i
, are presented for

the sake of comparison. The average linear crystal-
linity, a

L
, has been computed from a

L
"+

i
'

i
a
L,i

, and
the contrast follows from

*q
el
"MQ

id
/[a

L
(1!a

L
)]N1@2 (2)

One observes that the long periods of both compo-
nents increase with increasing sample density. The
volume fraction of the larger component decreases
from 95% to 90%, while its crystallinity increases
from 87% to 91%. These changes, however, are close
to the accuracy of the experiment. The study of the
specific surfaces supports the notion of flat and ex-
tended layers, whose stacks fill the volume completely.
For the smaller component the crystallinity decreases
with increasing sample density. For this component it

could be possible to exchange the assignment of the
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TABLE IV Derived structural parameters, computed from the
values given in the preceding tables. The numerical index discrimi-
nates between the different components. ' is the volume fraction
occupied by the ith component. M̧

i
is the long period. a

L, i
is the

linear crystallinity from SAXS. S
i
/» is the specific surface. 2'

i
/ M̧

i
is

the expected theoretical value for the specific surface in the case of
flat and infinitely extended layers. *q

%-
is the electron density differ-

ence between the two phases. For the larger component the appar-
ent relative widths, (r

i
/dM

i
)
0"4

, are presented (cf. Equation 1). The
intervals of confidence are computed by applying the rules of the
error propagation

D55 D59 D63

Larger component:
'

1
0.954$0.003 0.922$0.004 0.896$0.006

M̧
1

(nm) 10.1 $0.2 12.4 $0.3 15.7 $0.7
a
L,1

0.87 $0.03 0.90 $0.05 0.91 $0.06
S
1
/» (m2 cm~3) 182 $27 159 $49 134 $40

2'
1
/ M̧

1
(m2 cm~3) 189 $4 149 $7 114 $6

(r
!
/dM

!
)
0"4

0.51 $0.01 0.42 $0.01 0.43 $0.07
(r

#
/dM

#
)
0"4

0.25 $0.01 0.25 $0.03 0.28 $0.07

Smaller component
'

2
0.046$0.003 0.078$0.004 0.104$0.006

M̧
2

(nm) 8.2 $0.2 9.0 $0.2 11.5 $0.3
a
L,2

0.57 $0.01 0.43 $0.01 0.37 $0.01
S
2
/» (m2 cm~3) 11 $2 19 $6 21 $6

2'
2
/ M̧

2
(m2 cm~3) 11 $5 17 $4 18 $4

Sample averages:
a
L

0.86 $0.03 0.86 $0.05 0.85 $0.05
*q

%-
(e.u. nm~3) 44.9 $3 46.2 $7 46.3 $7

crystalline layers with that of the amorphous layers.
This would justify the fact that the average linear
crystallinity would increase (0.85$0.03, 0.87$0.05,
0.88$0.04) with increasing density. However, it
would present the difficulty that the contrast between
the phases should increase beyond the theoretical
value for ideal phase separation of 47.5 e.u. nm~3

(44$3, 48$8, 50$7). We admit that, because of the
low accuracy, the chosen assignment is more or less
arbitrary. However, our choice results in a stronger
support for the extreme microhardness found in
sample D59 (cf. Table I).

5. Discussion
Inspection of the raw scattering curves immediately
reveals that the crystalline layers within these high
crystalline PET samples possess a short-range order.
Further analysis of the SAXS indicates that 90% or
more of the sample volume is filled with stacks from
crystalline layers with only a narrow amorphous zone
in between. The observed thickness of the crystalline
layers is extremely high in support of our previous
findings [3]. In analogy to studies from the field of
metallurgy [4, 6—8] we suggest the observed structure
is termed a ‘‘layered nanocrystalline structure’’. In this
sense, high-pressure crystallization of PET might be
called a venture from the semicrystalline into the nano-
crystalline regime.

Within the error of the experiment, the computed
electron density contrast yields the theoretical value.
Only for sample D55 there is an indication for a re-
duced contrast, which might indicate a high amount

of crystal imperfections. The broad error band of
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the parameter values predominantly originates from
the uncertain determination of the sample thicknesses
(the samples splintered when they were cut). The mass
density, the crystallinity of the nanocrystalline stacks
and the melting point increase simultaneously (Table
I) while the fraction of the nanocrystalline stacks
decreases (Table IV). The values for the volume cry-
stallinity from DSC, a

#C
, rise with decreasing micro-

hardness. Both parameters show no correlation with
the volume crystallinity from density, a

D
. The value of

a
D

itself remains significantly lower than the linear
crystallinity from the SAXS analysis, a

L
. One can

explain such a finding by the presence of amorphous
material outside the lamellar stacks. In a previous
paper [28] such kind of material was found in layers
which limit the coherence length of the stacks of lamel-
lae. These layer stacks were shown to contain only a
few coherently scattered crystalline lamellae. A deter-
mination of the stack height from the data from the
present samples is cumbersome (if not unreasonable)
because of the implications caused by the distinct form
factor scattering of the thin amorphous layers.

Unexpectedly, the highest microhardness value was
not obtained for the sample with the highest density,
but for the sample D59. According to the SAXS analy-
sis, D59 is the sample with the highest linear crystal-
linity and with the narrowest amorphous layers within
the major component stacks. In addition, with respect
to the width of the layer thickness distributions in the
nanocrystalline component (cf. Table IV), sample D59
is more perfect than the other ones. On the other hand,
the linear crystallinity of the nanocrystalline regions of
sample D59 is close to that of the sample D63. Hence,
the low hardness value obtained for sample D63 may
be sought in the thicker amorphous layers and in the
decreased nanocrystalline fraction.

The microhardness value of PET crystallized at
atmospheric pressure [1] is about 60% lower than
that of the nanocrystalline material [3] investigated in
the present study. For sample D59 the measured
microhardness is even higher than that for the
prediction of infinitely thick crystals from ab initio
calculations [35], H=

#
"380 MPa. The decrease of

microhardness with decreasing crystal thickness is
a general phenomenon for semicrystalline polymers
crystallized under atmospheric pressure and is ex-
plained by the surface free energy influence [36]. Why
does this effect not occur in our samples? We believe
that this is due to the fact that the amorphous layers
are very thin. To a first approximation one could
conclude that such thin layers do not decrease the
microhardness. Furthermore, it might be useful to
consider the Hall—Petch relation [5, 37]

r"r
0
#

f

d
#
1@2

(3)

according to which the observed yield stress, r, can be
larger than the lattice friction stress required to move
individual dislocations, r

0
. d

#
is the size of the crystal-

line grain and f is a constant. Through Tabor’s rela-
tion, r and r correspond to H and H=, respectively
0 # #
[35]. This relation is only applicable if the amorphous



Figure 7 Hall—Petch plot from the microhardness values, H, and
the crystalline layer thickness of the nanocrystalline component,
dM
#,1

, for three PET samples crystallized at 4 kbar for 3 h. (———)
The level of the calculated hardness for infinitely thick crystals.

zones are thin enough to be considered as mere grain
boundaries. It is a peculiarity of the nanocrystalline
regime, that due to the small size, d

#
, of the crystallites,

a considerable increase of the microhardness beyond
the theoretical microhardness of the single crystal can
be predicted. Experimental data for layered nanocom-
posites, which support this prediction are published in
the review of Froes and Suryanarayana [4]. From our
data of Fig. 7, it is difficult, however, to draw any clear
dependence of H upon dM

#,1
. According to Hall—Petch

predictions, sample D55 should show the highest
microhardness value while, in fact, it presents the
lowest H value. In order to explain this shortcoming,
one may consider the lower density and small contrast
of this sample and may speculate about the amorph-
ous material which might sandwich the layer stacks
and, consequently, reduce the microhardness values.

6. Conclusion
By crystallizing PET at high pressure, a material
with nanocrystalline structure, consisting of crystal-
line lamellae with a thickness of approximately 10 nm
separated by thin amorphous layers ((1.5 nm), has
been prepared. Such a material has not been obtained
with any polymer crystallized under normal condi-
tions where the amorphous layers usually are larger
than 2 nm. The nanocrystalline structure is related to
an unexpectedly high value of microhardness. This
method of preparation could be a promising tech-
nique for the development of other nanocrystalline
polymeric materials with conducting, ferroelectric
and optical properties having enhanced mechanical
behaviour.
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Appendix. Theoretical considerations
A.1. The interface distribution function
The absolute slit-smeared scattering intensity, nor-
malized with respect to the primary beam intensity,
geometrical factors and the scattering volume, », will
be designated by II (s) /» and is obtained in units of
e.u. nm~4. Here s"(2k)sin h, k being the wavelength
of radiation and h being half the scattering angle.
The investigated samples consist of crystalline and
amorphous regions connected by transition zones of
finite thickness and showing a short-range local den-
sity fluctuation within each of the regions. Let II

*$
(s)/»

be the slit-smeared scattering curve of the correspond-
ing ideal two-phase system without density fluctu-
ations and with sharp phase boundaries, and let it be
sufficient to describe the deviations of the investigated
system from the ideal one by only two scalar para-
meters II

F-
/» and d

5
. II

F-
/» is a constant background

intensity, which takes into account the local density
fluctuations within each of the two phases, and d

5
is

the thickness of the transition zone between the phases
(the limitation of this rough approximation has been
extensively discussed in previous papers [7, 8]). Then
II
*$
(s)/» describes the scattering of a sample, for which

the electron density, q
%-
(r), at every point r in the

irradiated volume » can only take one of two values.
q
%-
(r) shows a discontinuity at the phase boundary.

This phase boundary forms the inner surface of the
sample, occupying no volume. In such an ideal two-
phase system, the volume is divided into two disjunct
regions, and structure investigation remains only
a matter of two-phase topology and of weighting
factors.

Furthermore, let us assume that the regions of the
two phases are arranged in the form of stacked layers
with sufficiently large lateral extension and let us de-
fine in real-space a coordinate, x, which runs through
the stacks in the direction perpendicular to the layer
surfaces. The scattered intensity II

*$
(s) /» of such a one-

dimensional ideal system only is a function of the
statistics of the distances, d

ij
, between any pair of

phase boundaries labelled i and j along the stack
(where the sign of each contribution has to be taken
into account). In this context, the symbol d is used for
distances in the one-dimensional system, whereas
the letter l will be used for solid angle averages of
distances.

According to Ruland [24, 38] it is useful to trans-
form the smeared scattered intensity of the observed
two-phase system, II (s)/», into the so-called interfer-
ence function of the ideal two-phase system, GI (s), by
*$
GI
*$
(s)"

[II (s) /»!II
F-
/»]s3

(1!8p2r2
5
s2) erfc(2pr

5
s)#4(pr

5
s)1@2exp(!4p2r2

5
s2)

!AI
P
. (A1)

0094) for support of this investigation. One of us means of the equation
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where r
5
"d

5
/3 is a measure of the width of the

transition zone between the phases, and AI
P

is the
Porod’s asymptote of the slit-smeared scattering
curve, II (s)/» (in the case of an ideal system the
smeared scattering intensity, II

*$
(s)/», for sufficiently

large values of s, is given by AI
P
/s3). The parameters

II
F-
/», d

5
and AI

P
in this representation are determined

by a fitting procedure [28]. By transforming GI
*$
(s)

from reciprocal into real space, the interface distribu-
tion function (IDF), g

1
(x), is obtained

g
1
(x)"pP

=

0

GI
*$
(s)C4J

0
(2pxs)!2A2pxs#

1

2pxs B
]J

1
(2pxs)Dds (A2)

where J
0

and J
1

are Bessel functions of orders zero
and one. (Compared to earlier definitions, two
changes have been made: higher order Bessel func-
tions have been expressed in terms of lower order
ones, and the normalization has been changed, so that
now :=

~=
g
1
(x)dx"A

PÇ
(instead of AI

P
); for definitions

cf. Equations 7 and 8). g
1
(x) is proportional to the

second derivative of the one-dimensional correlation
function [23]. The IDF is composed of a series of
distance distributions, h

i
(x). The centres of gravity of

the first two distance distributions, dM
1

and dM
2
, repres-

ent the average thicknesses of the layers of phase 1 and
phase 2, respectively. The average is taken over the
irradiated volume. For many semicrystalline systems
it is easy to identify which one of the two values is the
average thickness of the amorphous and which one is
the average thickness of the crystalline layers.

A.2. The weight of the interface distribution
in absolute units

In many cases one can assume that the slit of the
Kratky camera is infinitely long. This means that the
well-known smearing equation

II (s) /»"2P
=

0

I (s2#y2)1@2/»dy (A3)

is valid, with I(s)/» being the scattered intensity,
which one would measure with a point focus. Let the
scattering arise from layer stacks with sufficiently flat
and extended surfaces. In this case it is useful to define
a one-dimensional intensity, I

1
(s)/», which could be

directly measured if all the lamellar stacks had the
same orientation. I

1
(s)/» and I (s)/» are related by

I
1
(s)/»"2ps2I(s)/» (A4)

With the limiting values for the corresponding
Porod’s law being defined as

A
PÇ
" lim

s?=
s2I

1
(s)/» (A5)

AI
P
" lim

s?=
s3II (s)/» (A6)
A
P
" lim

s?=
s4I (s)/» (A7)
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and with Equations A3 and A4 one finds

A
PÇ
"4 AI

P
"2pA

P
(A8)

The quantity A
P

is given in units of e.u nm~7.
(In a preceding paper [17], A

P
was incorrectly given in

e.u. nm~8 units. Moreover, in the former paper, the
symbol A

P
has been used instead of A

PÇ
).

Using Equations A1 and A2 it can be shown that

A
PÇ
"2P

=

0

g
1
(x) dx

"2P
=

0

h
1
(x) dx

"2P
=

0

h
2
(x) dx (A9)

where h
1
(x) and h

2
(x) represent the thickness distribu-

tion of the crystalline and the amorphous layers, re-
spectively. Thus the Porod constant which can be
determined fitting the tail of the curve I

1
(s)s2/» is also

equal to the total integral of the IDF. Therefore,
Porod’s invariant A

PÇ
can also be called the weight of

the IDF g
1
(x) and will be designated by the symbol ¼.

In order to determine the thickness distributions
h
1
(x) and h

2
(x) from the measured IDF, one firstly has

to define a mathematical model of the IDF which
describes the statistics of stacked lamellae and second-
ly has to vary the parameters of this model until the
resulting model function fits the measured IDF. It is
interesting to compare ¼

&*5
, the value for the para-

meter, ¼, obtained by the fit, with the measured value
¼

.%!
"A

PÇ
. If one chooses a model in which the

lamellae building up the ideal system are completely
flat, it might turn out that a fitting for small values of
x (the values left of the first maximum) is not possible.
Here the fitted values may be smaller than the meas-
ured ones, so that

¼
&*5
)¼

.%!
(A10)

This means that there exist some very small additional
crystalline and/or amorphous regions, which were not
taken into account in the model based on flat lamellae.
These additional regions can only be built up by
bulges and/or dips in the surface of the lamellae
thus giving rise to a rugged phase boundary
[28, 29, 39, 40]. Therefore a comparison of ¼

&*5
with

¼
.%!

can reveal important information on the
smoothness of the inner surface.

A.3. The inner surface of the lamellar
two-phase system

An ideal lamellar system with perfect and infinitely
extended layers will show two surfaces per long peri-
od, M̧ " dM

1
# dM

2
. Therefore, its specific surface S/» is

given by

S

»

"

2

M̧
(A11)

For an ideal two-phase system, ¼ "A may be

.%! PÇexpressed in terms of the contrast between the two



phases, *q
%-
"q

%-Ç
!q

%-È
and the specific surface [41]

¼
.%!

"

*q2
%-

4p2

S

»

(A12)

Thus it is possible to compute the specific surface from
the Porod’s asymptote, if the electron density differ-
ence between the two phases is known. If one com-
pares a computed value for S/» with the theoretical
value 2/̧ M , one should compute S/» from ¼

&*5
rather

than from A
PÇ

(cf. Section A.2: ¼
.%!

"A
PÇ

may con-
tain a contribution from the roughness of the layer
surfaces).

A.4. A multi-component lamellar system
and the volume fractions of its
components

When analysing the SAXS, sometimes it becomes ne-
cessary to assume that two kinds of lamellar stacks
showing different structural parameters (long period,
crystallinity, layer statistics) coexist. From this it
follows that each component i has its own weight
¼

i
which, according to the above considerations, is

the partial Porod’s asymptote of the ideal and smooth
layer system with respect to the one-dimensional scat-
tering intensity. Generally, for a system with i com-
ponents, Equation A12 has to be replaced by a set of
i equations

¼
i
"

(*q2
%-
)
i

4p2

S
i

»

"

(*q2
%-
)
i

4p2 A
S

» Bi'i
, (A13)

with '
i
being defined as the fraction of volume, which

is filled by the ith kind of stacks. The values of the
¼

i
can be determined in a non-linear regression anal-

ysis by fitting the parameters of an IDF model with
two kinds of stacks to the observed IDF.

It is of some interest to estimate the values of the '
i
.

Neglecting the effect of bent layers, one may approx-
imate

A
S

» Bi"
S
i

»'
i

+

2

M̧
i

(A14)

where M̧
i
is the long period of the ith component. If,

moreover, ¼
i
is the Porod’s asymptote of the smooth

system, and if one assumes that the contrast between
the phases is the same within the different kinds of
layer stacks, one finds

'
i
+

M̧
i
¼

i
+
j

M̧
j
¼

j

(A15)

Thus, under the above approximations, the volume
fraction '

i
of the ith component in a multi-component

layer system is proportional to the product of its long
period and its weight in the interface distribution
function.
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